Arbeitspapier

The influence function of semiparametric estimators

There are many economic parameters that depend on nonparametric first steps. Examples include games, dynamic discrete choice, average exact consumer surplus, and treatment effects. Often estimators of these parameters are asymptotically equivalent to a sample average of an object referred to as the influence function. The influence function is useful in local policy analysis, in evaluating local sensitivity of estimators, and constructing debiased machine learning estimators. We show that the influence function is a Gateaux derivative with respect to a smooth deviation evaluated at a point mass. This result generalizes the classic Von Mises (1947) and Hampel (1974) calculation to estimators that depend on smooth nonparametric first steps. We give explicit influence functions for first steps that satisfy exogenous or endogenous orthogonality conditions. We use these results to generalize the omitted variable bias formula for regression to policy analysis for and sensitivity to structural changes. We apply this analysis and find no sensitivity to endogeneity of average equivalent variation estimates in a gasoline demand application.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP31/21

Klassifikation
Wirtschaft
Estimation: General
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: General
Single Equation Models: Single Variables: Instrumental Variables (IV) Estimation
Multiple or Simultaneous Equation Models: Instrumental Variables (IV) Estimation
Thema
Influence function
semiparametric estimation
NPIV

Ereignis
Geistige Schöpfung
(wer)
Ichimura, Hidehiko
Newey, Whitney K.
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2021

DOI
doi:10.47004/wp.cem.2021.3121
Handle
Letzte Aktualisierung
20.09.2024, 08:21 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Ichimura, Hidehiko
  • Newey, Whitney K.
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2021

Ähnliche Objekte (12)