Arbeitspapier
Cross-fitting and fast remainder rates for semiparametric estimation
There are many interesting and widely used estimators of a functional with finite semi-parametric variance bound that depend on nonparametric estimators of nuisance func-tions. We use cross-fitting to construct such estimators with fast remainder rates. We give cross-fit doubly robust estimators that use separate subsamples to estimate different nuisance functions. We show that a cross-fit doubly robust spline regression estimator of the expected conditional covariance is semiparametric efficient under minimal conditions. Corresponding estimators of other average linear functionals of a conditional expectation are shown to have the fastest known remainder rates under certain smoothness conditions. The cross-fit plug-in estimator shares some of these properties but has a remainder term that is larger than the cross-fit doubly robust estimator. As specific examples we consider the expected conditional covariance, mean with randomly missing data, and a weighted average derivative.
- Sprache
-
Englisch
- Erschienen in
-
Series: cemmap working paper ; No. CWP41/17
- Klassifikation
-
Wirtschaft
- Thema
-
Semiparametric estimation
semiparametric efficieny
bias
smoothness
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Newey, Whitney K.
Robins, James M.
- Ereignis
-
Veröffentlichung
- (wer)
-
Centre for Microdata Methods and Practice (cemmap)
- (wo)
-
London
- (wann)
-
2017
- DOI
-
doi:10.1920/wp.cem.2017.4117
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Newey, Whitney K.
- Robins, James M.
- Centre for Microdata Methods and Practice (cemmap)
Entstanden
- 2017