Arbeitspapier

Cross-fitting and fast remainder rates for semiparametric estimation

There are many interesting and widely used estimators of a functional with finite semi-parametric variance bound that depend on nonparametric estimators of nuisance func-tions. We use cross-fitting to construct such estimators with fast remainder rates. We give cross-fit doubly robust estimators that use separate subsamples to estimate different nuisance functions. We show that a cross-fit doubly robust spline regression estimator of the expected conditional covariance is semiparametric efficient under minimal conditions. Corresponding estimators of other average linear functionals of a conditional expectation are shown to have the fastest known remainder rates under certain smoothness conditions. The cross-fit plug-in estimator shares some of these properties but has a remainder term that is larger than the cross-fit doubly robust estimator. As specific examples we consider the expected conditional covariance, mean with randomly missing data, and a weighted average derivative.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP41/17

Klassifikation
Wirtschaft
Thema
Semiparametric estimation
semiparametric efficieny
bias
smoothness

Ereignis
Geistige Schöpfung
(wer)
Newey, Whitney K.
Robins, James M.
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2017

DOI
doi:10.1920/wp.cem.2017.4117
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Newey, Whitney K.
  • Robins, James M.
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2017

Ähnliche Objekte (12)