Arbeitspapier
The influence function of semiparametric estimators
There are many economic parameters that depend on nonparametric first steps. Examples include games, dynamic discrete choice, average exact consumer surplus, and treatment effects. Often estimators of these parameters are asymptotically equivalent to a sample average of an object referred to as the influence function. The influence function is useful in local policy analysis, in evaluating local sensitivity of estimators, and constructing debiased machine learning estimators. We show that the influence function is a Gateaux derivative with respect to a smooth deviation evaluated at a point mass. This result generalizes the classic Von Mises (1947) and Hampel (1974) calculation to estimators that depend on smooth nonparametric first steps. We give explicit influence functions for first steps that satisfy exogenous or endogenous orthogonality conditions. We use these results to generalize the omitted variable bias formula for regression to policy analysis for and sensitivity to structural changes. We apply this analysis and find no sensitivity to endogeneity of average equivalent variation estimates in a gasoline demand application.
- Language
-
Englisch
- Bibliographic citation
-
Series: cemmap working paper ; No. CWP31/21
- Classification
-
Wirtschaft
Estimation: General
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: General
Single Equation Models: Single Variables: Instrumental Variables (IV) Estimation
Multiple or Simultaneous Equation Models: Instrumental Variables (IV) Estimation
- Subject
-
Influence function
semiparametric estimation
NPIV
- Event
-
Geistige Schöpfung
- (who)
-
Ichimura, Hidehiko
Newey, Whitney K.
- Event
-
Veröffentlichung
- (who)
-
Centre for Microdata Methods and Practice (cemmap)
- (where)
-
London
- (when)
-
2021
- DOI
-
doi:10.47004/wp.cem.2021.3121
- Handle
- Last update
-
20.09.2024, 8:21 AM CEST
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Ichimura, Hidehiko
- Newey, Whitney K.
- Centre for Microdata Methods and Practice (cemmap)
Time of origin
- 2021