Arbeitspapier

Optimal spatiotemporal prediction of karstwater levels

In many fields of applied statistics samples from several locations in an investigation area are taken repeatedly over time. Especially in environmental monitoring the chemical and physical conditions in water, air and soil are measured using fixed and possibly mobile monitoring stations. The monitoring studies are aimed to model the phenomenon of interest, e.g. ground-level ozone-rain fall acidity or groundwater levels in karststone and to predict the phenomenon at unsampled locations as well as into the future. For this purposes the spatiotemporal dynamic linear model is proposed, which builds up the framework for recursive best linear predictions. On one hand the spatiotemporal recursive best linear predictor is strongly connected with the predictors arising from the Kalman lter. On the other hand, this spatiotemporal predictor includes the method of linear Bayesian kriging as a special case. Thus the proposed method for spatiotemporal prediction is related to frequently used geostatistical and time series analysis methods. The spatiotemporal modeling and prediction approach will be applied to hydrogeological data of yearly averaged karstwater levels from 50 wells monitoring a Triassic karstwater reservoir in a mining region of Hungary from 1970 to 1990.

Sprache
Englisch

Erschienen in
Series: Technical Report ; No. 1999,15

Thema
Environmental Monitoring
Geostatistics
Hydrogeology
Kalman Filtering
Karstwater Levels
Kriging
Linear Bayes Prediction
Recursive Prediction
Time Series Analysis

Ereignis
Geistige Schöpfung
(wer)
Berke, Olaf
Ereignis
Veröffentlichung
(wer)
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
(wo)
Dortmund
(wann)
1999

Handle
Letzte Aktualisierung
20.09.2024, 08:23 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Berke, Olaf
  • Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen

Entstanden

  • 1999

Ähnliche Objekte (12)