Arbeitspapier
Recession Prediction with Optimal Use of Leading Indicators
We use the gradient boosting estimation technique and the ROC curveto non-parametrically measure and exploit the maximal predictive powerof leading indicators for the future state of the business cycle. We de-velop novel procedures for finding the best performing transformationsof individual indicators, for combining them to form an optimal reces-sion prediction model and for assessing which predictors are contribut-ing in the model. Among our empirical findings with US data are thatthe predictive impact of various indicators is non-monotone and thatrecession predictions based on our nonparametric procedures clearlyoutperform the ones based on a conventional probit model.
- Sprache
-
Englisch
- Erschienen in
-
Series: Discussion paper ; No. 125
- Klassifikation
-
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Single Equation Models; Single Variables: Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
Forecasting Models; Simulation Methods
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
- Thema
-
gradient boosting
leading indicators
non-parametric esti-mation
optimal binary prediction
recession prediction
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Kauppi, Heikki
- Ereignis
-
Veröffentlichung
- (wer)
-
Aboa Centre for Economics (ACE)
- (wo)
-
Turku
- (wann)
-
2019
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Kauppi, Heikki
- Aboa Centre for Economics (ACE)
Entstanden
- 2019