Arbeitspapier

Recession Prediction with Optimal Use of Leading Indicators

We use the gradient boosting estimation technique and the ROC curveto non-parametrically measure and exploit the maximal predictive powerof leading indicators for the future state of the business cycle. We de-velop novel procedures for finding the best performing transformationsof individual indicators, for combining them to form an optimal reces-sion prediction model and for assessing which predictors are contribut-ing in the model. Among our empirical findings with US data are thatthe predictive impact of various indicators is non-monotone and thatrecession predictions based on our nonparametric procedures clearlyoutperform the ones based on a conventional probit model.

Sprache
Englisch

Erschienen in
Series: Discussion paper ; No. 125

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Single Equation Models; Single Variables: Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
Forecasting Models; Simulation Methods
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
Thema
gradient boosting
leading indicators
non-parametric esti-mation
optimal binary prediction
recession prediction

Ereignis
Geistige Schöpfung
(wer)
Kauppi, Heikki
Ereignis
Veröffentlichung
(wer)
Aboa Centre for Economics (ACE)
(wo)
Turku
(wann)
2019

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Kauppi, Heikki
  • Aboa Centre for Economics (ACE)

Entstanden

  • 2019

Ähnliche Objekte (12)