Arbeitspapier

Local polynomial Whittle estimation of perturbed fractional processes

We propose a semiparametric local polynomial Whittle with noise estimator of the memory parameter in long memory time series perturbed by a noise term which may be serially correlated. The estimator approximates the log-spectrum of the short-memory component of the signal as well as that of the perturbation by two separate polynomials. Including these polynomials we obtain a reduction in the order of magnitude of the bias, but also inflate the asymptotic variance of the long memory estimator by a multiplicative constant. We show that the estimator is consistent for d in (0,1), asymptotically normal for d in (0,3/4), and if the spectral density is sufficiently smooth near frequency zero, the rate of convergence can become arbitrarily close to the parametric rate, sqrt(n). A Monte Carlo study reveals that the proposed estimator performs well in the presence of a serially correlated perturbation term. Furthermore, an empirical investigation of the 30 DJIA stocks shows that this estimator indicates stronger persistence in volatility than the standard local Whittle (with noise) estimator.

Sprache
Englisch

Erschienen in
Series: Queen's Economics Department Working Paper ; No. 1218

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Thema
bias reduction
local Whittle
long memory
perturbed fractional process
semiparametric estimation
stochastic volatility
Schätztheorie
Nichtparametrisches Verfahren

Ereignis
Geistige Schöpfung
(wer)
Frederiksen, Per
Nielsen, Frank S.
Nielsen, Morten Ørregaard
Ereignis
Veröffentlichung
(wer)
Queen's University, Department of Economics
(wo)
Kingston (Ontario)
(wann)
2009

Handle
Letzte Aktualisierung
20.09.2024, 08:22 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Frederiksen, Per
  • Nielsen, Frank S.
  • Nielsen, Morten Ørregaard
  • Queen's University, Department of Economics

Entstanden

  • 2009

Ähnliche Objekte (12)