Arbeitspapier

Bayesian clustering for row effects models

We deal with two-way contingency tables having ordered column categories. We use a row effects model wherein each interaction term is assumed to have a multiplicative form involving a row effect parameter and a fixed column score. We propose a methodology to cluster row effects in order to simplify the interaction structure and enhancing the interpretation of the model. Our method uses a product partition model with a suitable specification of the cohesion function, so that we can carry out our analysis on a collection of models of varying dimensions using a straightforward MCMC sampler. The methodology is illustrated with reference to simulated and real data sets.

Sprache
Englisch

Erschienen in
Series: Quaderni di Dipartimento - EPMQ ; No. 187

Klassifikation
Wirtschaft
Thema
Clustering
Contingency table
Log-linear model
Markov Chain Monte Carlo
Mixture of Dirichlet process prior
Partition
Product partition model
Row effects model
Clusteranalyse
Qualitatives Verfahren
Logit-Modell
Markovscher Prozess
Bayes-Statistik
Statistische Methode
Theorie

Ereignis
Geistige Schöpfung
(wer)
Tarantola, Claudia
Consonni, Guido
Dallaportas, Petros
Ereignis
Veröffentlichung
(wer)
Università degli Studi di Pavia, Dipartimento di Economia Politica e Metodi Quantitativi (EPMQ)
(wo)
Pavia
(wann)
2006

Handle
Letzte Aktualisierung
20.09.2024, 08:22 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Tarantola, Claudia
  • Consonni, Guido
  • Dallaportas, Petros
  • Università degli Studi di Pavia, Dipartimento di Economia Politica e Metodi Quantitativi (EPMQ)

Entstanden

  • 2006

Ähnliche Objekte (12)