Artikel

Forecast combinations for structural breaks in volatility: Evidence from BRICS countries

The aim of this paper is to investigate the relevance of structural breaks for forecasting the volatility of daily returns on BRICS countries (Brazil, Russia, India, China and South Africa). The data set used in the analysis is the Morgan Stanley Capital International MSCI daily returns and covers the period from 19 July 1999 to 16 July 2015. To identify structural breaks in the unconditional variance, a binary segmentation algorithm with a test, which considers both the fourth order moment of the process and persistence in the variance, has been implemented. Some forecast combinations that account for the identified structural breaks have been introduced and their performance has been evaluated and compared by using the Model Confidence Set (MCS). The results give significant evidence of the relevance of the structural breaks. In particular, in the regimes identified by the structural breaks, a substantial change in the unconditional variance is quite evident. In forecasting volatility, the combination that averages forecasts obtained using different rolling estimation windows outperforms all the other combinations

Sprache
Englisch

Erschienen in
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 11 ; Year: 2018 ; Issue: 4 ; Pages: 1-13 ; Basel: MDPI

Klassifikation
Wirtschaft
Forecasting Models; Simulation Methods
Financial Econometrics
Financial Forecasting and Simulation
Thema
structural breaks
forecast combinations
GARCH model
out-of-sample forecasts

Ereignis
Geistige Schöpfung
(wer)
De Gaetano, Davide
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2018

DOI
doi:10.3390/jrfm11040064
Handle
Letzte Aktualisierung
20.09.2024, 08:23 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • De Gaetano, Davide
  • MDPI

Entstanden

  • 2018

Ähnliche Objekte (12)