Arbeitspapier

Classification of nonparametric regression functions in heterogeneous panels

We investigate a nonparametric panel model with heterogeneous regression functions. In a variety of applications, it is natural to impose a group structure on the regression curves. Specifically, we may suppose that the observed individuals can be grouped into a number of classes whose members all share the same regression function. We develop a statistical procedure to estimate the unknown group structure from the observed data. Moreover, we derive the asymptotic properties of the procedure and investigate its finite sample performance by means of a simulation study and a real-data example.

Language
Englisch

Bibliographic citation
Series: cemmap working paper ; No. CWP06/15

Classification
Wirtschaft
Subject
Classification of regression curves
k-means clustering
kernel estimation
nonparametric regression
panel data

Event
Geistige Schöpfung
(who)
Vogt, Michael
Linton, Oliver
Event
Veröffentlichung
(who)
Centre for Microdata Methods and Practice (cemmap)
(where)
London
(when)
2015

DOI
doi:10.1920/wp.cem.2015.0615
Handle
Last update
20.09.2024, 8:23 AM CEST

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Vogt, Michael
  • Linton, Oliver
  • Centre for Microdata Methods and Practice (cemmap)

Time of origin

  • 2015

Other Objects (12)