Arbeitspapier
Identifying effects of multivalued treatments
Multivalued treatment models have typically been studied under restrictive assumptions: ordered choice, and more recently unordered monotonicity. We show how treatment effects can be identified in a more general class of models that allows for multidimensional unobserved heterogeneity. Our results rely on two main assumptions: treatment assignment must be a measurable function of threshold-crossing rules, and enough continuous instruments must be available. We illustrate our approach for several classes of models.
- Sprache
-
Englisch
- Erschienen in
-
Series: cemmap working paper ; No. CWP34/18
- Klassifikation
-
Wirtschaft
- Thema
-
Identification
selection
multivalued treatments
instruments
monotonicity
multidimensional unobserved heterogeneity
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Lee, Sokbae
Salanié, Bernard
- Ereignis
-
Veröffentlichung
- (wer)
-
Centre for Microdata Methods and Practice (cemmap)
- (wo)
-
London
- (wann)
-
2018
- DOI
-
doi:10.1920/wp.cem.2018.3418
- Handle
- Letzte Aktualisierung
-
20.09.2024, 08:24 MESZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Lee, Sokbae
- Salanié, Bernard
- Centre for Microdata Methods and Practice (cemmap)
Entstanden
- 2018