Arbeitspapier

Identifying Marginal Treatment Effects in the Presence of Sample Selection

This article presents identification results for the marginal treatment effect (MTE) when there is sample selection. We show that the MTE is partially identified for individuals who are always observed regardless of treatment, and derive uniformly sharp bounds on this parameter under three increasingly restrictive sets of assumptions. The first result imposes standard MTE assumptions with an unrestricted sample selection mechanism. The second set of conditions imposes monotonicity of the sample selection variable with respect to treatment, considerably shrinking the identified set. Finally, we incorporate a stochastic dominance assumption which tightens the lower bound for the MTE. Our analysis extends to discrete instruments. The results rely on a mixture reformulation of the problem where the mixture weights are identified, extending Lee's (2009) trimming procedure to the MTE context. We propose estimators for the bounds derived and use data made available by Deb, Munkin, and Trivedi (2006) to empirically illustrate the usefulness of our approach.

Sprache
Englisch

Erschienen in
Series: IZA Discussion Papers ; No. 14428

Klassifikation
Wirtschaft
Semiparametric and Nonparametric Methods: General
Multiple or Simultaneous Equation Models: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
Multiple or Simultaneous Equation Models: Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
Thema
sample selection
instrumental variable
marginal treatment eect
partial identication
principal stratication
program evaluation
mixture models

Ereignis
Geistige Schöpfung
(wer)
Bartalotti, Otávio
Kédagni, Désiré
Possebom, Vítor Augusto
Ereignis
Veröffentlichung
(wer)
Institute of Labor Economics (IZA)
(wo)
Bonn
(wann)
2021

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Bartalotti, Otávio
  • Kédagni, Désiré
  • Possebom, Vítor Augusto
  • Institute of Labor Economics (IZA)

Entstanden

  • 2021

Ähnliche Objekte (12)