Arbeitspapier

Textual Sentiment, Option Characteristics, and Stock Return Predictability

We distill sentiment from a huge assortment of NASDAQ news articles by means of machine learning methods and examine its predictive power in single-stock option markets and equity markets. We provide evidence that single-stock options react to contemporaneous sentiment. Next, examining return predictability, we discover that while option variables indeed predict stock returns, sentiment variables add further informational content. In fact, both in a regression and a trading context, option variables orthogonalized to public and sentimental news are even more informative predictors of stock returns. Distinguishing further between overnight and trading-time news, we find the first to be more informative. From a statistical topic model, we uncover that this is attributable to the differing thematic coverage of the alternate archives. Finally, we show that sentiment disagreement commands a strong positive risk premium above and beyond market volatility and that lagged returns predict future returns in concentrated sentiment environments.

Sprache
Englisch

Erschienen in
Series: IRTG 1792 Discussion Paper ; No. 2018-023

Klassifikation
Wirtschaft
Financial Econometrics
Asset Pricing; Trading Volume; Bond Interest Rates
Information and Market Efficiency; Event Studies; Insider Trading
Behavioral Finance: Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making in Financial Markets‡
Thema
investor disagreement
option markets
overnight information
stock return predictability
textual sentiment
topic model
trading-time information

Ereignis
Geistige Schöpfung
(wer)
Chen, Cathy Yi-Hsuan
Fengler, Matthias R.
Härdle, Wolfgang Karl
Liu, Yanchu
Ereignis
Veröffentlichung
(wer)
Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
(wo)
Berlin
(wann)
2018

Handle
Letzte Aktualisierung
10.03.2025, 11:46 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Chen, Cathy Yi-Hsuan
  • Fengler, Matthias R.
  • Härdle, Wolfgang Karl
  • Liu, Yanchu
  • Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"

Entstanden

  • 2018

Ähnliche Objekte (12)