Arbeitspapier
partykit: A modular toolkit for recursive partytioning in R
The R package partykit provides a flexible toolkit for learning, representing, summarizing, and visualizing a wide range of tree-structured regression and classification models. The functionality encompasses: (a) basic infrastructure for representing trees (inferred by any algorithm) so that unified print/plot/predict methods are available; (b) dedicated methods for trees with constant fits in the leaves (or terminal nodes) along with suitable coercion functions to create such trees (e.g., by rpart, RWeka, PMML); (c) a reimplementation of conditional inference trees (ctree, originally provided in the party package); (d) an extended reimplementation of model-based recursive partitioning (mob, also originally in party) along with dedicated methods for trees with parametric models in the leaves. Here, a brief overview of the package and its design is given while more detailed discussions of items (a)
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Papers in Economics and Statistics ; No. 2014-10
- Klassifikation
-
Wirtschaft
Semiparametric and Nonparametric Methods: General
Neural Networks and Related Topics
Econometric Software
- Thema
-
recursive partitioning
regression trees
classification trees
statistical learning
(d) are available in vignettes accompanying the package.
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Hothorn, Torsten
Zeileis, Achim
- Ereignis
-
Veröffentlichung
- (wer)
-
University of Innsbruck, Research Platform Empirical and Experimental Economics (eeecon)
- (wo)
-
Innsbruck
- (wann)
-
2014
- Handle
- Letzte Aktualisierung
-
20.09.2024, 08:23 MESZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Hothorn, Torsten
- Zeileis, Achim
- University of Innsbruck, Research Platform Empirical and Experimental Economics (eeecon)
Entstanden
- 2014