Arbeitspapier

Intersection bounds: Estimation and inference

We develop a practical and novel method for inference on intersection bounds, namely bounds defined by either the infimum or supremum of a parametric or nonparametric function, or equivalently, the value of a linear programming problem with a potentially infinite constraint set. Our approach is especially convenient for models comprised of a continuum of inequalities that are separable in parameters, and also applies to models with inequalities that are non-separable in parameters. Since analog estimators for intersection bounds can be severely biased infinite samples, routinely underestimating the size of the identified set, we also offer a median-bias-corrected estimator of such bounds as a natural by-product of our inferential procedures. We develop theory for large sample inference based on the strong approximation of a sequence of series or kernel-based empirical processes by a sequence of penultimate Gaussian processes. These penultimate processes are generally not weakly convergent, and thus non-Donsker. Our theoretical results establish that we can nonetheless perform asymptotically valid inference based on these processes. Our construction also provides new adaptive inequality/moment selection methods. We provide conditions for the use of nonparametric kernel and series estimators, including a novel result that establishes strong approximation for any general series estimator admitting linearization, which may be of independent interest.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP34/11

Klassifikation
Wirtschaft
Hypothesis Testing: General
Estimation: General
Semiparametric and Nonparametric Methods: General
Thema
bound analysis
conditional moments
partial identification
strong approximation
infinite dimensional constraints
linear programming
concentration inequalities
anti-concentration inequalities
non-Donsker empirical process methods
moderate deviations
adaptive moment selection
Mathematische Optimierung
Schätztheorie

Ereignis
Geistige Schöpfung
(wer)
Chernozhukov, Victor
Lee, Sokbae
Rosen, Adam M.
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2011

DOI
doi:10.1920/wp.cem.2011.3411
Handle
Letzte Aktualisierung
20.09.2024, 08:22 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Chernozhukov, Victor
  • Lee, Sokbae
  • Rosen, Adam M.
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2011

Ähnliche Objekte (12)