Artikel

Address identification using telematics: An algorithm to identify dwell locations

In this work, a method is proposed for exploiting the predictive power of a geo-tagged dataset as a means of identification of user-relevant points of interest (POI). The proposed methodology is subsequently applied in an insurance context for the automatic identification of a driver's residence address, solely based on his pattern of movements on the map. The analysis is performed on a real-life telematics dataset. We have anonymized the considered dataset for the purpose of this study to respect privacy regulations. The model performance is evaluated based on an independent batch of the dataset for which the address is known to be correct. The model is capable of predicting the residence postal code of the user with a high level of accuracy, with an f1 score of 0.83. A reliable result of the proposed method could generate benefits beyond the area of fraud, such as general data quality inspections, one-click quotations, and better-targeted marketing.

Sprache
Englisch

Erschienen in
Journal: Risks ; ISSN: 2227-9091 ; Volume: 8 ; Year: 2020 ; Issue: 3 ; Pages: 1-12 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
telematics
address identification
POI
machine learning
mean shift clustering
DBSCAN clustering
fraud detection

Ereignis
Geistige Schöpfung
(wer)
Grumiau, Christopher
Mostoufi, Mina
Pavlioglou, Solon
Verdonck, Tim
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2020

DOI
doi:10.3390/risks8030092
Handle
Letzte Aktualisierung
20.09.2024, 08:22 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Grumiau, Christopher
  • Mostoufi, Mina
  • Pavlioglou, Solon
  • Verdonck, Tim
  • MDPI

Entstanden

  • 2020

Ähnliche Objekte (12)