Arbeitspapier

Joint Bayesian Analysis of Parameters and States in Nonlinear, Non-Gaussian State Space Models

We propose a new methodology for designing flexible proposal densities for the joint posterior density of parameters and states in a nonlinear non-Gaussian state space model. We show that a highly efficient Bayesian procedure emerges when these proposal densities are used in an independent Metropolis-Hastings algorithm. A particular feature of our approach is that smoothed estimates of the states and the marginal likelihood are obtained directly as an output of the algorithm. Our method provides a computationally efficient alternative to several recently proposed algorithms. We present extensive simulation evidence for stochastic volatility and stochastic intensity models. For our empirical study, we analyse the performance of our method for stock returns and corporate default panel data. (This paper is an updated version of the paper that appeared earlier as Barra, I., Hoogerheide, L.F., Koopman, S.J., and Lucas, A. (2013) "Joint Independent Metropolis-Hastings Methods for Nonlinear Non-Gaussian State Space Models". TI Discussion Paper 13-050/III. Amsterdam: Tinbergen Institute.)

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 14-118/III

Klassifikation
Wirtschaft
Bayesian Analysis: General
Statistical Simulation Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Financial Econometrics
Thema
Bayesian inference
importance sampling
Monte Carlo estimation
Metropolis-Hastings algorithm
mixture of Student's t-distributions

Ereignis
Geistige Schöpfung
(wer)
Barra, István
Hoogerheide, Lennart
Koopman, Siem Jan
Lucas, André
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2014

Handle
Letzte Aktualisierung
20.09.2024, 08:24 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Barra, István
  • Hoogerheide, Lennart
  • Koopman, Siem Jan
  • Lucas, André
  • Tinbergen Institute

Entstanden

  • 2014

Ähnliche Objekte (12)