Kodieren - aber wie? Varianten der Grounded-Theory-Methodologie und der qualitativen Inhaltsanalyse im Vergleich

Abstract: In qualitative research projects, the choice between different methods of analysis is often cumbersome, especially for novices writing their theses. In particular, the decision for a specific coding method poses a challenge for many researchers because the scientific discourse mainly focuses on the general differences between methods and less on their merits for specific types of research projects. Taking into account the growing differentiation of methods into diverging variants, this problem becomes even more urgent. In the present article, I discuss this issue with regard to some of the most central variants of grounded theory methodology and qualitative content analysis. First, I present the key analytic features of these variants. Second, I compare them with regard to the following aspects: how a priori knowledge is handled and how categories are constructed; how the resulting codings are further analyzed; and the type of results that the different variants generate. Finally

Weitere Titel
How to Code Your Qualitative Data - A Comparison Between Grounded Theory Methodology and Qualitative Content Analysis
Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Deutsch
Anmerkungen
Veröffentlichungsversion
begutachtet (peer reviewed)
In: Forum Qualitative Sozialforschung / Forum: Qualitative Social Research ; 21 (2020) 1 ; 30

Klassifikation
Sozialwissenschaften, Soziologie, Anthropologie
Schlagwort
Qualitative Inhaltsanalyse
Grounded theory
Methodologie

Ereignis
Veröffentlichung
(wo)
Mannheim
(wer)
SSOAR - Social Science Open Access Repository
(wann)
2020
Urheber
Bücker, Nicola

DOI
10.17169/fqs-21.1.3389
URN
urn:nbn:de:101:1-2021020515345575368924
Rechteinformation
Open Access; Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Bücker, Nicola
  • SSOAR - Social Science Open Access Repository

Entstanden

  • 2020

Ähnliche Objekte (12)