Artikel

Nonlinear inflation forecasting with recurrent neural networks

Motivated by the recent literature that finds that artificial neural networks (NN) can efficiently predict economic time‐series in general and inflation in particular, we investigate if the forecasting performance can be improved even further by using a particular kind of NN—a recurrent neural network. We use a long short‐term memory recurrent neural network (LSTM) that was proven to be highly efficient for sequential data and computed univariate forecasts of monthly US CPI inflation. We show that even though LSTM slightly outperforms autoregressive model (AR), NN, and Markov‐switching models, its performance is on par with the seasonal autoregressive model SARIMA. Additionally, we conduct a sensitivity analysis with respect to hyperparameters and provide a qualitative interpretation of what the networks learn by applying a novel layer‐wise relevance propagation technique.

Sprache
Englisch

Erschienen in
Journal: Journal of Forecasting ; ISSN: 1099-131X ; Volume: 42 ; Year: 2022 ; Issue: 2 ; Pages: 240-259 ; Hoboken, NJ: Wiley

Thema
forecasting
inflation
LRP
LSTM
neural networks
SARIMA

Ereignis
Geistige Schöpfung
(wer)
Almosova, Anna
Andresen, Niek
Ereignis
Veröffentlichung
(wer)
Wiley
(wo)
Hoboken, NJ
(wann)
2022

DOI
doi:10.1002/for.2901
Letzte Aktualisierung
20.09.2024, 08:22 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Almosova, Anna
  • Andresen, Niek
  • Wiley

Entstanden

  • 2022

Ähnliche Objekte (12)