Arbeitspapier

Forecasting with measurement errors in dynamic models

In this paper we explore the consequences for forecasting of the following two facts: first, that over time statistical agencies revise and improve published data, so that observations on more recent events are those that are least well measured. Second, that economies are such that observations on the most recent events contain the the largest signal about the future. We discuss a variety of forecasting problems in this environment, and present an application using a univariate model of the quarterly growth of UK private consumption expenditure.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 521

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Forecasting Models; Simulation Methods
Thema
Forecasting, Data revisions, Dynamic models
Prognoseverfahren
Statistische Erhebung
Statistischer Fehler

Ereignis
Geistige Schöpfung
(wer)
Harrison, Richard T.
Kapetanios, George
Ereignis
Veröffentlichung
(wer)
Queen Mary University of London, Department of Economics
(wo)
London
(wann)
2004

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Harrison, Richard T.
  • Kapetanios, George
  • Queen Mary University of London, Department of Economics

Entstanden

  • 2004

Ähnliche Objekte (12)