Arbeitspapier
Modeling long memory and structural breaks in conditional variances: An adaptive FIGARCH approach
This paper introduces a new long memory volatility process, denoted by Adaptive FIGARCH, or A-FIGARCH, which is designed to account for both long memory and structural change in the conditional variance process. Structural change is modeled by allowing the intercept to follow a slowly varying function, specified by Gallant (1984)'s flexible functional form. A Monte Carlo study finds that the A-FIGARCH model outperforms the standard FIGARCH model when structural change is present, and performs at least as well in the absence of structural instability. An empirical application to stock market volatility is also included to illustrate the usefulness of the technique.
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Paper ; No. 593
- Klassifikation
-
Wirtschaft
Statistical Simulation Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Foreign Exchange
- Thema
-
FIGARCH, Long memory, Structural change, Stock market volatility
ARCH-Modell
Modell-Spezifikation
Simulation
Zeitreihenanalyse
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Baillie, Richard T.
Morana, Claudio
- Ereignis
-
Veröffentlichung
- (wer)
-
Queen Mary University of London, Department of Economics
- (wo)
-
London
- (wann)
-
2007
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Baillie, Richard T.
- Morana, Claudio
- Queen Mary University of London, Department of Economics
Entstanden
- 2007