Arbeitspapier

Modeling long memory and structural breaks in conditional variances: An adaptive FIGARCH approach

This paper introduces a new long memory volatility process, denoted by Adaptive FIGARCH, or A-FIGARCH, which is designed to account for both long memory and structural change in the conditional variance process. Structural change is modeled by allowing the intercept to follow a slowly varying function, specified by Gallant (1984)'s flexible functional form. A Monte Carlo study finds that the A-FIGARCH model outperforms the standard FIGARCH model when structural change is present, and performs at least as well in the absence of structural instability. An empirical application to stock market volatility is also included to illustrate the usefulness of the technique.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 593

Klassifikation
Wirtschaft
Statistical Simulation Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Foreign Exchange
Thema
FIGARCH, Long memory, Structural change, Stock market volatility
ARCH-Modell
Modell-Spezifikation
Simulation
Zeitreihenanalyse

Ereignis
Geistige Schöpfung
(wer)
Baillie, Richard T.
Morana, Claudio
Ereignis
Veröffentlichung
(wer)
Queen Mary University of London, Department of Economics
(wo)
London
(wann)
2007

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Baillie, Richard T.
  • Morana, Claudio
  • Queen Mary University of London, Department of Economics

Entstanden

  • 2007

Ähnliche Objekte (12)