Arbeitspapier
A utility representation theorem with weaker continuity condition
We prove that a preference relation which is continuous on every straight line has a utility representation if its domain is a convex subset of a finite dimensional vector space. Our condition on the domain of a preference relation is stronger than Eilenberg (1941) and Debreu (1959, 1964), but our condition on the continuity of a preference relation is strictly weaker than theirs.
- Language
-
Englisch
- Bibliographic citation
-
Series: Working Papers ; No. 401
- Classification
-
Wirtschaft
Mathematical Methods; Programming Models; Mathematical and Simulation Modeling: General
Consumer Economics: Theory
- Subject
-
Linear continuity
Utility representation
Nutzentheorie
Präferenztheorie
Theorie
- Event
-
Geistige Schöpfung
- (who)
-
Inoue, Tomoki
- Event
-
Veröffentlichung
- (who)
-
Bielefeld University, Institute of Mathematical Economics (IMW)
- (where)
-
Bielefeld
- (when)
-
2008
- Handle
- URN
-
urn:nbn:de:hbz:361-13695
- Last update
-
29.11.0009, 4:22 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Inoue, Tomoki
- Bielefeld University, Institute of Mathematical Economics (IMW)
Time of origin
- 2008