Arbeitspapier

A utility representation theorem with weaker continuity condition

We prove that a preference relation which is continuous on every straight line has a utility representation if its domain is a convex subset of a finite dimensional vector space. Our condition on the domain of a preference relation is stronger than Eilenberg (1941) and Debreu (1959, 1964), but our condition on the continuity of a preference relation is strictly weaker than theirs.

Language
Englisch

Bibliographic citation
Series: Working Papers ; No. 401

Classification
Wirtschaft
Mathematical Methods; Programming Models; Mathematical and Simulation Modeling: General
Consumer Economics: Theory
Subject
Linear continuity
Utility representation
Nutzentheorie
Präferenztheorie
Theorie

Event
Geistige Schöpfung
(who)
Inoue, Tomoki
Event
Veröffentlichung
(who)
Bielefeld University, Institute of Mathematical Economics (IMW)
(where)
Bielefeld
(when)
2008

Handle
URN
urn:nbn:de:hbz:361-13695
Last update
29.11.0009, 4:22 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Inoue, Tomoki
  • Bielefeld University, Institute of Mathematical Economics (IMW)

Time of origin

  • 2008

Other Objects (12)