Artikel

Hierarchical time-varying estimation of asset pricing models

This paper presents a new hierarchical methodology for estimating multi factor dynamic asset pricing models. The approach is loosely based on the sequential Fama-MacBeth approach and developed in a kernel regression framework. However, the methodology uses a very flexible bandwidth selection method which is able to emphasize recent data and information to derive the most appropriate estimates of risk premia and factor loadings at each point in time. The choice of bandwidths and weighting schemes are achieved by a cross-validation procedure; this leads to consistent estimators of the risk premia and factor loadings. Additionally, an out-of-sample forecasting exercise indicates that the hierarchical method leads to a statistically significant improvement in forecast loss function measures, independently of the type of factor considered.

Sprache
Englisch

Erschienen in
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 15 ; Year: 2022 ; Issue: 1 ; Pages: 1-26 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
asset pricing model
Fama-MacBeth model
estimation of beta
kernel-weighted regressions
cross-validation
time-varying parameter regressions

Ereignis
Geistige Schöpfung
(wer)
Baillie, Richard
Calonaci, Fabio
Kapetanios, George
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2022

DOI
doi:10.3390/jrfm15010014
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Baillie, Richard
  • Calonaci, Fabio
  • Kapetanios, George
  • MDPI

Entstanden

  • 2022

Ähnliche Objekte (12)