Arbeitspapier

Multiresolution analysis of long time series with applications to finance

We consider multi-resolution time series models and their application to high-frequency financial data. An individual transaction share price of a specific firm is subject to market microstructure noise. Therefore, we propose trading duration time weighted averages over given time intervals. Averages over long intervals lead to a coarse resolution and averaging over shorter intervals lead to a finer resolution. Arranging sub-intervals of given lengths on scales with coarse to fine resolution imply a structure which can be represented as a directed acyclic graph. Time series models are then formulated using this graph structure. It is shown that these models have a linear state space representation which allows for efficient computation of the likelihood needed in parameter estimation and for a straightforward treatment of missing observations. Application of these models to the log transaction prices of the IBM shares traded at the New York Stock Exchange from February until October 2002 show that the corresponding one-step prediction errors are heavy tailed and therefore a specific variance term is allowed to follow a fiEGARCH specification, improving the tail behavior and leading to a better fit.

Sprache
Englisch

Erschienen in
Series: Discussion Paper ; No. 497

Thema
multiresolution
time series
state space representation
colored transition noise
directed acyclic graphs

Ereignis
Geistige Schöpfung
(wer)
Högn, Ralph
Czado, Claudia
Ereignis
Veröffentlichung
(wer)
Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen
(wo)
München
(wann)
2005

DOI
doi:10.5282/ubm/epub.1864
Handle
URN
urn:nbn:de:bvb:19-epub-1864-3
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Högn, Ralph
  • Czado, Claudia
  • Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen

Entstanden

  • 2005

Ähnliche Objekte (12)