Arbeitspapier

Estimation of long memory in volatility using wavelets

This work studies wavelet-based Whittle estimator of the Fractionally Integrated Exponential Generalized Autoregressive Conditional Heteroscedasticity (FIEGARCH) model, often used for modeling long memory in volatility of financial assets. The newly proposed estimator approximates the spectral density using wavelet transform, which makes it more robust to certain types of irregularities in data. Based on an extensive Monte Carlo study, both behaviour of the proposed estimator and its relative performance with respect to traditional estimators are assessed. In addition, we study properties of the estimators in presence of jumps, which brings interesting discussion. We find that wavelet-based estimator may become an attractive robust and fast alternative to the traditional methods of estimation.

Sprache
Englisch

Erschienen in
Series: FinMaP-Working Paper ; No. 33

Klassifikation
Wirtschaft
Thema
volatility
long memory
FIEGARCH
wavelets
Whittle
Monte Carlo

Ereignis
Geistige Schöpfung
(wer)
Kraicova, Lucie
Barunik, Jozef
Ereignis
Veröffentlichung
(wer)
Kiel University, FinMaP - Financial Distortions and Macroeconomic Performance
(wo)
Kiel
(wann)
2015

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Kraicova, Lucie
  • Barunik, Jozef
  • Kiel University, FinMaP - Financial Distortions and Macroeconomic Performance

Entstanden

  • 2015

Ähnliche Objekte (12)