Arbeitspapier

Localized Linear Discriminant Analysis

Despite its age, the Linear Discriminant Analysis performs well even in situations where the underlying premises like normally distributed data with constant covariance matrices over all classes are not met. It is, however, a global technique that does not regard the nature of an individual observation to be classified. By weighting each training observation according to its distance to the observation of interest, a global classifier can be transformed into an observation specific approach. So far, this has been done for logistic discrimination. By using LDA instead, the computation of the local classifier is much simpler. Moreover, it is ready for applications in multi-class situations.

Language
Englisch

Bibliographic citation
Series: Technical Report ; No. 2006,10

Subject
classification
local models
LDA

Event
Geistige Schöpfung
(who)
Czogiel, Irina
Luebke, Karsten
Zentgraf, Marc
Weihs, Claus
Event
Veröffentlichung
(who)
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
(where)
Dortmund
(when)
2006

Handle
Last update
20.09.2024, 8:24 AM CEST

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Czogiel, Irina
  • Luebke, Karsten
  • Zentgraf, Marc
  • Weihs, Claus
  • Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen

Time of origin

  • 2006

Other Objects (12)