Artikel

Measuring Tsunami Museum Visitor Satisfaction: An Importance Performance Map Analysis

This paper aims to develop a natural-disaster theme museum visitor satisfaction model by integrating authenticity, involvement, and destination image by applying Arnolds' theory of emotion. This study takes place at Aceh Tsunami Museum, Indonesia. An Importance-Performance Map Analysis is applied to identify the performance and the importance of the museum attributes in determining visitor satisfaction. Using an adapted questionnaire, 199 usable data gathered from the Aceh Tsunami Museum were analyzed using Partial Least-Squares Structural Equation Modelling (PLS-SEM). The result showed that authenticity, involvement, and destination image as the predictors of visitor satisfaction with image as the highest predictor of visitor satisfaction. This study also found that image plays as a mediator in the relationship between authenticity, involvement and satisfaction. Subsequently, this study identifies two paths to reach visitor satisfaction in the natural-disaster theme museum. They are authenticity-image-satisfaction and involvement-image-satisfaction with the latter path have higher contribution to the visitor satisfaction. From IPMA analysis, it is found that activities that adding knowledge to the visitors are deemed important to create visitors satisfaction.

Sprache
Englisch

Erschienen in
Journal: Cogent Business & Management ; ISSN: 2331-1975 ; Volume: 9 ; Year: 2022 ; Issue: 1 ; Pages: 1-21

Klassifikation
Management
Thema
destination image
Importance Performance Map Analysis
Involvement
museum
perceived authenticity
visitor satisfaction

Ereignis
Geistige Schöpfung
(wer)
Aprilia, Cut
Yusra, Yusra
Ismail, Ida Rosnita
Ereignis
Veröffentlichung
(wer)
Taylor & Francis
(wo)
Abingdon
(wann)
2022

DOI
doi:10.1080/23311975.2021.2020398
Letzte Aktualisierung
20.09.2024, 08:24 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Aprilia, Cut
  • Yusra, Yusra
  • Ismail, Ida Rosnita
  • Taylor & Francis

Entstanden

  • 2022

Ähnliche Objekte (12)