Artikel
Locally Bayesian learning in networks
Agents in a network want to learn the true state of the world from their own signals and their neighbors' reports. Agents know only their local networks, consisting of their neighbors and the links among them. Every agent is Bayesian with the (possibly misspecified) prior belief that her local network is the entire network. We present a tractable learning rule to implement such locally Bayesian learning: each agent extracts new information using the full history of observed reports in her local network. Despite their limited network knowledge, agents learn correctly when the network is a social quilt, a tree-like union of cliques. But they fail to learn when a network contains interlinked circles (echo chambers), despite an arbitrarily large number of correct signals.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Theoretical Economics ; ISSN: 1555-7561 ; Volume: 15 ; Year: 2020 ; Issue: 1 ; Pages: 239-278 ; New Haven, CT: The Econometric Society
- Klassifikation
-
Wirtschaft
Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
Network Formation and Analysis: Theory
- Thema
-
Locally Bayesian learning
rational learning with misspecified priors
efficient learning in finite networks
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Li, Wei
Tan, Xu
- Ereignis
-
Veröffentlichung
- (wer)
-
The Econometric Society
- (wo)
-
New Haven, CT
- (wann)
-
2020
- DOI
-
doi:10.3982/TE3273
- Handle
- Letzte Aktualisierung
-
20.09.2024, 08:22 MESZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Li, Wei
- Tan, Xu
- The Econometric Society
Entstanden
- 2020