Artikel

Heteroskedasticity of unknown form in spatial autoregressive models with a moving average disturbance term

In this study, I investigate the necessary condition for the consistency of the maximum likelihood estimator (MLE) of spatial models with a spatial moving average process in the disturbance term. I show that the MLE of spatial autoregressive and spatial moving average parameters is generally inconsistent when heteroskedasticity is not considered in the estimation. I also show that the MLE of parameters of exogenous variables is inconsistent and determine its asymptotic bias. I provide simulation results to evaluate the performance of the MLE. The simulation results indicate that the MLE imposes a substantial amount of bias on both autoregressive and moving average parameters.

Language
Englisch

Bibliographic citation
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 3 ; Year: 2015 ; Issue: 1 ; Pages: 101-127 ; Basel: MDPI

Classification
Wirtschaft
Estimation: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Multiple or Simultaneous Equation Models: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
Subject
spatial dependence
spatial moving average
spatial autoregressive
maximum likelihood estimator
MLE
asymptotics
heteroskedasticity
SARMA(1,1)

Event
Geistige Schöpfung
(who)
Doğan, Osman
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2015

DOI
doi:10.3390/econometrics3010101
Handle
Last update
20.09.2024, 8:24 AM CEST

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Doğan, Osman
  • MDPI

Time of origin

  • 2015

Other Objects (12)