Arbeitspapier

Single market nonparametric identification of multi-attribute hedonic equilibrium models

This paper derives conditions under which preferences and technology are nonparametrically identified in hedonic equilibrium models, where products are differentiated along more than one dimension and agents are characterized by several dimensions of unobserved heterogeneity. With products differentiated along a quality index and agents characterized by scalar unobserved heterogeneity, single crossing conditions on preferences and technology provide identifying restrictions. We develop similar shape restrictions in the multi-attribute case. These shape restrictions, which are based on optimal transport theory and generalized convexity, allow us to identify preferences for goods differentiated along multiple dimensions, from the observation of a single market. We thereby extend identification results in Matzkin (2003) and Heckman, Matzkin, and Nesheim (2010) to accommodate multiple dimensions of unobserved heterogeneity. One of our results is a proof of absolute continuity of the distribution of endogenously traded qualities, which is of independent interest.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP27/19

Klassifikation
Wirtschaft
Semiparametric and Nonparametric Methods: General
Optimization Techniques; Programming Models; Dynamic Analysis
Bargaining Theory; Matching Theory
Thema
Hedonic equilibrium
nonparametric identification
multidimensional unobserved heterogeneity
cyclical monotonicity
optimal transport

Ereignis
Geistige Schöpfung
(wer)
Chernozhukov, Victor
Galichon, Alfred
Henry, Marc
Pass, Brendan
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2019

DOI
doi:10.1920/wp.cem.2019.2719
Handle
Letzte Aktualisierung
20.09.2024, 08:25 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Chernozhukov, Victor
  • Galichon, Alfred
  • Henry, Marc
  • Pass, Brendan
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2019

Ähnliche Objekte (12)