Artikel

Modelling unobserved heterogeneity in claim counts using finite mixture models

When modelling insurance claim count data, the actuary often observes overdispersion and an excess of zeros that may be caused by unobserved heterogeneity. A common approach to accounting for overdispersion is to consider models with some overdispersed distribution as opposed to Poisson models. Zero-inflated, hurdle and compound frequency models are typically applied to insurance data to account for such a feature of the data. However, a natural way to deal with unobserved heterogeneity is to consider mixtures of a simpler models. In this paper, we consider k-finite mixtures of some typical regression models. This approach has interesting features: first, it allows for overdispersion and the zero-inflated model represents a special case, and second, it allows for an elegant interpretation based on the typical clustering application of finite mixture models. k-finite mixture models are applied to a car insurance claim dataset in order to analyse whether the problem of unobserved heterogeneity requires a richer structure for risk classification. Our results show that the data consist of two subpopulations for which the regression structure is different.

Sprache
Englisch

Erschienen in
Journal: Risks ; ISSN: 2227-9091 ; Volume: 8 ; Year: 2020 ; Issue: 1 ; Pages: 1-13 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
automobile insurance
overdispersion
risk classification
risk selection
zero-inflation

Ereignis
Geistige Schöpfung
(wer)
Bermúdez, Lluís
Karlis, Dimitris
Morillo, Isabel
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2020

DOI
doi:10.3390/risks8010010
Handle
Letzte Aktualisierung
20.09.2024, 08:24 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Bermúdez, Lluís
  • Karlis, Dimitris
  • Morillo, Isabel
  • MDPI

Entstanden

  • 2020

Ähnliche Objekte (12)