Arbeitspapier

Robust inference in models identified via heteroskedasticity

Identification via heteroskedasticity exploits differences in variances across regimes to identify parameters in simultaneous equations. I study weak identification in such models, which arises when variances change very little or the variances of multiple shocks change close to proportionally. I show that this causes standard inference to become unreliable, propose two tests to detect weak identification, and develop nonconservative methods for robust inference on a subset of the parameter vector. I apply these tools to monetary policy shocks, identified using heteroskedasticity in high frequency data. I detect weak identification in daily data, causing standard inference methods to be invalid. However, using intraday data instead allows the shocks to be strongly identified.

Sprache
Englisch

Erschienen in
Series: Staff Report ; No. 876

Klassifikation
Wirtschaft
Hypothesis Testing: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Interest Rates: Determination, Term Structure, and Effects
Thema
heteroskedasticity
weak identification
robust inference
pretesting
monetary policy
impulse response function

Ereignis
Geistige Schöpfung
(wer)
Lewis, Daniel J.
Ereignis
Veröffentlichung
(wer)
Federal Reserve Bank of New York
(wo)
New York, NY
(wann)
2018

Handle
Letzte Aktualisierung
20.09.2024, 08:21 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Lewis, Daniel J.
  • Federal Reserve Bank of New York

Entstanden

  • 2018

Ähnliche Objekte (12)