Arbeitspapier

Robust inference in models identified via heteroskedasticity

Identification via heteroskedasticity exploits differences in variances across regimes to identify parameters in simultaneous equations. I study weak identification in such models, which arises when variances change very little or the variances of multiple shocks change close to proportionally. I show that this causes standard inference to become unreliable, propose two tests to detect weak identification, and develop nonconservative methods for robust inference on a subset of the parameter vector. I apply these tools to monetary policy shocks, identified using heteroskedasticity in high frequency data. I detect weak identification in daily data, causing standard inference methods to be invalid. However, using intraday data instead allows the shocks to be strongly identified.

Language
Englisch

Bibliographic citation
Series: Staff Report ; No. 876

Classification
Wirtschaft
Hypothesis Testing: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Interest Rates: Determination, Term Structure, and Effects
Subject
heteroskedasticity
weak identification
robust inference
pretesting
monetary policy
impulse response function

Event
Geistige Schöpfung
(who)
Lewis, Daniel J.
Event
Veröffentlichung
(who)
Federal Reserve Bank of New York
(where)
New York, NY
(when)
2018

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Lewis, Daniel J.
  • Federal Reserve Bank of New York

Time of origin

  • 2018

Other Objects (12)