Arbeitspapier

No Need to Run Millions of Regressions

We argue that in modelling cross-country growth models one should first identify so-called outlying observations. For the data set of Sala-i-Martin, we use the least median of squares (LMS) estimator to identify outliers. As LMS is not suited for inference, we then use reweighted least squares (RLS) for our cross-country growth models. We identify 27 variables that are significantly related to economic growth. Subsequently, applying Sala-i-Martin's approach for the data set without outliers hardly reveals any additional information. Variables that are insignificant according to the RLS method are generally not significantly related to economic growth under the Sala-i-Martin approach.

Sprache
Englisch

Erschienen in
Series: CESifo Working Paper ; No. 288

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Model Evaluation, Validation, and Selection
Economic Growth and Aggregate Productivity: General
Thema
Sensitivity analysis
outliers
economic growth

Ereignis
Geistige Schöpfung
(wer)
Sturm, Jan-Egbert
Ereignis
Veröffentlichung
(wer)
Center for Economic Studies and ifo Institute (CESifo)
(wo)
Munich
(wann)
2000

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Sturm, Jan-Egbert
  • Center for Economic Studies and ifo Institute (CESifo)

Entstanden

  • 2000

Ähnliche Objekte (12)