Artikel

Computation of sparse and dense equilibrium strategies of evolutionary games

The evolution of social or biological species can be modeled as an evolutionary game with the equilibrium strategies of the game as prediction for the ultimate distributions of species in population, when some species may survive with positive proportions, while others become extinct. We say a strategy is dense if it contains a large and diverse number of positive species, and is sparse if it has only a few dominant ones. Sparse equilibrium strategies can be found relatively easily, while dense ones are more computationally costly. Here we show that by formulating a 'complementary' problem for the computation of equilibrium strategies, we are able to reduce the cost for computing dense equilibrium strategies much more efficiently. We describe the primary and complementary algorithms for computing dense as well as sparse equilibrium strategies, and present test results on randomly generated games as well as a more biologically related one. In particular, we demonstrate that the complementary algorithm is about an order of magnitude faster than the primary algorithm to obtain the dense equilibrium strategies for all our test cases.

Sprache
Englisch

Erschienen in
Journal: Games ; ISSN: 2073-4336 ; Volume: 9 ; Year: 2018 ; Issue: 3 ; Pages: 1-15 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
evolutionary games
Nash equilibrium
Shapley-Snow algorithm
dense vs. sparse strategies
biodiversity

Ereignis
Geistige Schöpfung
(wer)
Hao, Yiping
Wu, Zhijun
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2018

DOI
doi:10.3390/g9030046
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Hao, Yiping
  • Wu, Zhijun
  • MDPI

Entstanden

  • 2018

Ähnliche Objekte (12)