Arbeitspapier

Nonparametric identification of regression models containing a misclassified dichotomous regressor without instruments

This note considers nonparametric identification of a general nonlinear regression model with a dichotomous regressor subject to misclassification error. The available sample information consists of a dependent variable and a set of regressors, one of which is binary and error-ridden with misclassification error that has unknown distribution. Our identification strategy does not parameterize any regression or distribution functions, and does not require additional sample information such as instrumental variables, repeated measurements, or an auxiliary sample. Our main identifying assumption is that the regression model error has zero conditional third moment. The results include a closed-form solution for the unknown distributions and the regression function.

Language
Englisch

Bibliographic citation
Series: cemmap working paper ; No. CWP17/07

Classification
Wirtschaft
Subject
misclassification error , identification , nonparametric regression
Regression
Statistischer Fehler
Nichtparametrisches Verfahren

Event
Geistige Schöpfung
(who)
Chen, Xiaohong
Hu, Yingyao
Lewbel, Arthur
Event
Veröffentlichung
(who)
Centre for Microdata Methods and Practice (cemmap)
(where)
London
(when)
2007

DOI
doi:10.1920/wp.cem.2007.1707
Handle
Last update
20.09.2024, 8:23 AM CEST

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Chen, Xiaohong
  • Hu, Yingyao
  • Lewbel, Arthur
  • Centre for Microdata Methods and Practice (cemmap)

Time of origin

  • 2007

Other Objects (12)