Arbeitspapier

Nonparametric identification of regression models containing a misclassified dichotomous regressor without instruments

This note considers nonparametric identification of a general nonlinear regression model with a dichotomous regressor subject to misclassification error. The available sample information consists of a dependent variable and a set of regressors, one of which is binary and error-ridden with misclassification error that has unknown distribution. Our identification strategy does not parameterize any regression or distribution functions, and does not require additional sample information such as instrumental variables, repeated measurements, or an auxiliary sample. Our main identifying assumption is that the regression model error has zero conditional third moment. The results include a closed-form solution for the unknown distributions and the regression function.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP17/07

Klassifikation
Wirtschaft
Thema
misclassification error , identification , nonparametric regression
Regression
Statistischer Fehler
Nichtparametrisches Verfahren

Ereignis
Geistige Schöpfung
(wer)
Chen, Xiaohong
Hu, Yingyao
Lewbel, Arthur
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2007

DOI
doi:10.1920/wp.cem.2007.1707
Handle
Letzte Aktualisierung
20.09.2024, 08:23 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Chen, Xiaohong
  • Hu, Yingyao
  • Lewbel, Arthur
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2007

Ähnliche Objekte (12)