Arbeitspapier

Reinforcement Learning and Portfolio Allocation: Challenging Traditional Allocation Methods

We test the out-of-sample trading performance of model-free reinforcement learning (RL) agents and compare them with the performance of equally-weighted portfolios and traditional mean-variance (MV) optimization benchmarks. By dividing European and U.S. indices constituents into factor datasets, the RL-generated portfolios face different scenarios defined by these factor environments. The RL approach is empirically evaluated based on a selection of measures and probabilistic assessments. Training these models only on price data and features constructed from these prices, the performance of the RL approach yields better risk-adjusted returns as well as probabilistic Sharpe ratios compared to MV specifications. However, this performance varies across factor environments. RL models partially uncover the nonlinear structure of the stochastic discount factor. It is further demonstrated that RL models are successful at reducing left-tail risks in out-of-sample settings. These results indicate that these models are indeed useful in portfolio management applications.

Sprache
Englisch

Erschienen in
Series: QMS Working Paper ; No. 2023/01

Klassifikation
Wirtschaft
Portfolio Choice; Investment Decisions
Operations Research; Statistical Decision Theory
Large Data Sets: Modeling and Analysis
Financial Econometrics
Thema
Asset Allocation
Reinforcement Learning
Machine Learning
Portfolio Theory
Diversification

Ereignis
Geistige Schöpfung
(wer)
Lavko, Matus
Klein, Tony
Walther, Thomas
Ereignis
Veröffentlichung
(wer)
Queen's University Belfast, Queen's Management School
(wo)
Belfast
(wann)
2023

DOI
doi:10.2139/ssrn.4346043
Handle
Letzte Aktualisierung
20.09.2024, 08:21 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Lavko, Matus
  • Klein, Tony
  • Walther, Thomas
  • Queen's University Belfast, Queen's Management School

Entstanden

  • 2023

Ähnliche Objekte (12)