Artikel

Encoding candlesticks as images for pattern classification using convolutional neural networks

Candlestick charts display the high, low, opening, and closing prices in a specific period. Candlestick patterns emerge because human actions and reactions are patterned and continuously replicate. These patterns capture information on the candles. According to Thomas Bulkowski's Encyclopedia of Candlestick Charts, there are 103 candlestick patterns. Traders use these patterns to determine when to enter and exit. Candlestick pattern classification approaches take the hard work out of visually identifying these patterns. To highlight its capabilities, we propose a two-steps approach to recognize candlestick patterns automatically. The first step uses the Gramian Angular Field (GAF) to encode the time series as different types of images. The second step uses the Convolutional Neural Network (CNN) with the GAF images to learn eight critical kinds of candlestick patterns. In this paper, we call the approach GAF-CNN. In the experiments, our approach can identify the eight types of candlestick patterns with 90.7% average accuracy automatically in real-world data, outperforming the LSTM model.

Sprache
Englisch

Erschienen in
Journal: Financial Innovation ; ISSN: 2199-4730 ; Volume: 6 ; Year: 2020 ; Issue: 1 ; Pages: 1-19 ; Heidelberg: Springer

Klassifikation
Management
Thema
Convolutional Neural Networks (CNN)
Gramian Angular Field (GAF)
Candlestick
Patterns Classification
Time-Series
Financial Vision

Ereignis
Geistige Schöpfung
(wer)
Chen, Jun-Hao
Tsai, Yun-Cheng
Ereignis
Veröffentlichung
(wer)
Springer
(wo)
Heidelberg
(wann)
2020

DOI
doi:10.1186/s40854-020-00187-0
Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Chen, Jun-Hao
  • Tsai, Yun-Cheng
  • Springer

Entstanden

  • 2020

Ähnliche Objekte (12)