Extensions of l1 regularization increase detection specificity for cell-type specific parameters in dynamic models

Abstract: Background
Ordinary differential equation systems are frequently utilized to model biological systems and to infer knowledge about underlying properties. For instance, the development of drugs requires the knowledge to which extent malign cells differ from healthy ones to provide a specific treatment with least side effects. As these cell-type specific properties may stem from any part of biochemical cell processes, systematic quantitative approaches are necessary to identify the relevant potential drug targets. An ℓ1 regularization for the maximum likelihood parameter estimation proved to be successful, but falsely predicted cell-type dependent behaviour had to be corrected manually by using a Profile Likelihood approach.

Results
The choice of extended ℓ1 penalty functions significantly decreased the number of falsely detected cell-type specific parameters. Thus, the total accuracy of the prediction could be increased. This was tested on a realistic dynamical benchmark model used for the DREAM6 challenge. Among Elastic Net, Adaptive Lasso and a non-convex ℓq penalty, the latter one showed the best predictions whilst also requiring least computation time. All extended methods include a hyper-parameter in the regularization function. For an Erythropoietin (EPO) induced signalling pathway, the extended methods ℓq and Adaptive Lasso revealed an unpublished alternative parsimonious model when varying the respective hyper-parameters.

Conclusions
Using ℓq or Adaptive Lasso with an a-priori choice for the hyper-parameter can lead to a more specific and accurate result than ℓ1. Scanning different hyper-parameters can yield additional pieces of information about the system

Sprache
Englisch
Umfang
Online-Ressource
Anmerkungen
issn: 1471-2105
Standort
Deutsche Nationalbibliothek Frankfurt am Main

Schlagwort
Systembiologie
Regularisierung
Genauigkeit
Empfindlichkeit
Klassifikation
Biowissenschaften, Biologie

Urheber
Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2019

DOI
10.1186/s12859-019-2976-1
URN
urn:nbn:de:bsz:25-freidok-1501469
Rechteinformation
Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:54 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2019

Ähnliche Objekte (12)