Arbeitspapier
The Roots of Inequality: Estimating Inequality of Opportunity from Regression Trees
We propose a set of new methods to estimate inequality of opportunity based on conditional inference regression trees. In particular, we illustrate how these methods represent a substantial improvement over existing empirical approaches to measure in equality of opportunity. First, they minimize the risk of arbitrary and ad-hoc model selection. Second, they provide a standardized way of trading off upward and downward biases in inequality of opportunity estimations. Finally, regression trees can be graphically represented; their structure is immediate to read and easy to understand. This will make the measurement of inequality of opportunity more easily comprehensible to a large audience. These advantages are illustrated by an empirical application based on the 2011 wave of the European Union Statistics on Income and Living Conditions.
- Sprache
-
Englisch
- Erschienen in
-
Series: ifo Working Paper ; No. 252
- Klassifikation
-
Wirtschaft
Personal Income, Wealth, and Their Distributions
Equity, Justice, Inequality, and Other Normative Criteria and Measurement
Multiple or Simultaneous Equation Models: Classification Methods; Cluster Analysis; Principal Components; Factor Models
- Thema
-
Equality of opportunity
machine learning
random forests.
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Brunori, Paolo
Hufe, Paul
Mahler, Gerszon Daniel
- Ereignis
-
Veröffentlichung
- (wer)
-
ifo Institute - Leibniz Institute for Economic Research at the University of Munich
- (wo)
-
Munich
- (wann)
-
2018
- Handle
- Letzte Aktualisierung
-
20.09.2024, 08:21 MESZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Brunori, Paolo
- Hufe, Paul
- Mahler, Gerszon Daniel
- ifo Institute - Leibniz Institute for Economic Research at the University of Munich
Entstanden
- 2018