Arbeitspapier
Serial Correlation in Contingency Tables
Pearson's chi-squared test for independence in two-way contingency tables is developed under the assumption of multinomial sampling. In this paper I consider the case where draws are not independent but exhibit serial dependence. I derive the asymptotic distribution and show that adjusting Pearson's statistic is simple and works reasonably well irrespective whether the processes are Markov chains or m-dependent. Moreover, I propose a test for independence that has a simple limiting distribution if at least one of the two processes is a Markov chain. For three-way tables I investigate the Cochrane-Mantel-Haenszel (CMH) statistic and show that there exists a closely related procedure that has power against a larger class of alternatives. This new statistic might be used to test whether a Markov chain is simple against the alternative of being a Markov chain of higher order. Monte Carlo experiments are used to illustrate the small sample properties.
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Paper ; No. 228
- Klassifikation
-
Wirtschaft
Hypothesis Testing: General
Semiparametric and Nonparametric Methods: General
Model Evaluation, Validation, and Selection
- Thema
-
Goodness of Fit
Independence Tests
Cochrane-Mantel-Haenszel Test
Markov chain
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Elsinger, Helmut
- Ereignis
-
Veröffentlichung
- (wer)
-
Oesterreichische Nationalbank (OeNB)
- (wo)
-
Vienna
- (wann)
-
2020
- Handle
- Letzte Aktualisierung
-
20.09.2024, 08:23 MESZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Elsinger, Helmut
- Oesterreichische Nationalbank (OeNB)
Entstanden
- 2020