Arbeitspapier

Serial Correlation in Contingency Tables

Pearson's chi-squared test for independence in two-way contingency tables is developed under the assumption of multinomial sampling. In this paper I consider the case where draws are not independent but exhibit serial dependence. I derive the asymptotic distribution and show that adjusting Pearson's statistic is simple and works reasonably well irrespective whether the processes are Markov chains or m-dependent. Moreover, I propose a test for independence that has a simple limiting distribution if at least one of the two processes is a Markov chain. For three-way tables I investigate the Cochrane-Mantel-Haenszel (CMH) statistic and show that there exists a closely related procedure that has power against a larger class of alternatives. This new statistic might be used to test whether a Markov chain is simple against the alternative of being a Markov chain of higher order. Monte Carlo experiments are used to illustrate the small sample properties.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 228

Klassifikation
Wirtschaft
Hypothesis Testing: General
Semiparametric and Nonparametric Methods: General
Model Evaluation, Validation, and Selection
Thema
Goodness of Fit
Independence Tests
Cochrane-Mantel-Haenszel Test
Markov chain

Ereignis
Geistige Schöpfung
(wer)
Elsinger, Helmut
Ereignis
Veröffentlichung
(wer)
Oesterreichische Nationalbank (OeNB)
(wo)
Vienna
(wann)
2020

Handle
Letzte Aktualisierung
20.09.2024, 08:23 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Elsinger, Helmut
  • Oesterreichische Nationalbank (OeNB)

Entstanden

  • 2020

Ähnliche Objekte (12)