Arbeitspapier

Estimation with mixed data frequencies: A bias-correction approach

We propose a solution to the measurement error problem that plagues the estimation of the relation between the expected return of the stock market and its conditional variance due to the latency of these conditional moments. We use intra-period returns to construct a nonparametric proxy for the latent conditional variance in the first step which is subsequently used as an input in the second step to estimate the parameters characterizing the risk-return tradeoff via a GMM approach. We propose a bias-correction to the standard GMM estimator derived under a double asymptotic framework, wherein the number of intra-period returns, N, as well as the number of low frequency time periods, T , simultaneously go to infinity. Simulation exercises show that the bias-correction is particularly relevant for small values of N which is the case in empirically realistic scenarios. The methodology lends itself to additional applications, such as the empirical evaluation of factor models, wherein the factor betas may be estimated using intra-period returns and the unexplained returns or alphas subsequently recovered at lower frequencies.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP65/19

Klassifikation
Wirtschaft
Semiparametric and Nonparametric Methods: General
Asset Pricing; Trading Volume; Bond Interest Rates
Thema
Bias-Correction
Nonparametric Volatility
Return
Risk

Ereignis
Geistige Schöpfung
(wer)
Ghosh, Anisha
Linton, Oliver Bruce
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2019

DOI
doi:10.1920/wp.cem.2019.6519
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Ghosh, Anisha
  • Linton, Oliver Bruce
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2019

Ähnliche Objekte (12)