Arbeitspapier

Non-Bayesian updating in a social learning experiment

In our laboratory experiment, subjects, in sequence, have to predict the value of a good. The second subject in the sequence makes his prediction twice: first ("first belief"), after he observes his predecessor's prediction; second ("posterior belief"), after he observes his private signal. We find that the second subjects weigh their signal as a Bayesian agent would do when the signal confirms their first belief; they overweight the signal when it contradicts their first belief. This way of updating, incompatible with Bayesianism, can be explained by the Likelihood Ratio Test Updating (LRTU) model, a generalization of the Maximum Likelihood Updating rule. It is at odds with another family of updating, the Full Bayesian Updating. In another experiment, we directly test the LRTU model and find support for it.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP60/20

Klassifikation
Wirtschaft
Thema
Soziales Verhalten
Lernprozess
Entscheidung
Experiment
Rationalität
Asymmetrische Information
Bayes-Statistik

Ereignis
Geistige Schöpfung
(wer)
De Filippis, Roberta
Guarino, Antonio
Jehiel, Philippe
Kitagawa, Toru
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2020

DOI
doi:10.47004/wp.cem.2020.6020
Handle
Letzte Aktualisierung
20.09.2024, 08:25 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • De Filippis, Roberta
  • Guarino, Antonio
  • Jehiel, Philippe
  • Kitagawa, Toru
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2020

Ähnliche Objekte (12)