Arbeitspapier
Kernel density estimation for heaped data
In self-reported data usually a phenomenon called 'heaping' occurs, i.e. survey participants round the values of their income, weight or height to some degree. Additionally, respondents may be more prone to round off or up due to social desirability. By ignoring the heaping process a severe bias in terms of spikes and bumps is introduced when applying kernel density methods naively to the rounded data. A generalized Stochastic Expectation Maximization (SEM) approach accounting for heaping with potentially asymmetric rounding behaviour in univariate kernel density estimation is presented in this work. The introduced methods are applied to survey data of the German Socio-Economic Panel and exhibit very good performance simulations.
- Language
-
Englisch
- Bibliographic citation
-
Series: Diskussionsbeiträge ; No. 2015/27
- Classification
-
Wirtschaft
- Subject
-
Heaping
Survey Data
Measurement error
Self-reported data
Kernel density estimation
Rounded data
- Event
-
Geistige Schöpfung
- (who)
-
Groß, Marcus
Rendtel, Ulrich
- Event
-
Veröffentlichung
- (who)
-
Freie Universität Berlin, Fachbereich Wirtschaftswissenschaft
- (where)
-
Berlin
- (when)
-
2015
- Handle
- Last update
-
20.09.2024, 8:21 AM CEST
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Groß, Marcus
- Rendtel, Ulrich
- Freie Universität Berlin, Fachbereich Wirtschaftswissenschaft
Time of origin
- 2015