Arbeitspapier

Modelling Issues in Kernel Ridge Regression

Kernel ridge regression is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts. This paper investigates the influence of the choice of kernel and the setting of tuning parameters on forecast accuracy. We review several popular kernels, including polynomial kernels, the Gaussian kernel, and the Sinc kernel. We interpret the latter two kernels in terms of their smoothing properties, and we relate the tuning parameters associated to all these kernels to smoothness measures of the prediction function and to the signal-to-noise ratio. Based on these interpretations, we provide guidelines for selecting the tuning parameters from small grids using cross-validation. A Monte Carlo study confirms the practical usefulness of these rules of thumb. Finally, the flexible and smooth functional forms provided by the Gaussian and Sinc kernels makes them widely applicable, and we recommend their use instead of the pop ular polynomial kernels in general settings, in which no information on the data-generating process is available.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 11-138/4

Klassifikation
Wirtschaft
Model Construction and Estimation
Forecasting Models; Simulation Methods
Computational Techniques; Simulation Modeling
Thema
nonlinear forecasting
shrinkage estimation
kernel methods
high dimensionality
Prognoseverfahren
Nichtlineares Verfahren

Ereignis
Geistige Schöpfung
(wer)
Exterkate, Peter
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2011

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Exterkate, Peter
  • Tinbergen Institute

Entstanden

  • 2011

Ähnliche Objekte (12)