Arbeitspapier

Best subset binary prediction

We consider a variable selection problem for the prediction of binary outcomes. We study the best subset selection procedure by which the explanatory variables are chosen by maximizing Manski (1975, 1985)'s maximum score type objective function subject to a constraint on the maximal number of selected variables. We show that this procedure can be equivalently reformulated as solving a mixed integer optimization (MIO) problem, which enables computation of the exact or an approximate solution with a definite approximation error bound. In terms of theoretical results, we obtain non- asymptotic upper and lower risk bounds when the dimension of potential covariates is possibly much larger than the sample size. Our upper and lower risk bounds are minimax rate-optimal when the maximal number of selected variables is fixed and does not increase with the sample size. We illustrate usefulness of the best subset binary prediction approach via Monte Carlo simulations and an empirical application of the work-trip transportation mode choice.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP50/17

Klassifikation
Wirtschaft
Model Evaluation, Validation, and Selection
Forecasting Models; Simulation Methods
Large Data Sets: Modeling and Analysis
Thema
binary choice
maximum score estimation
best subset selection
l 0-constrained maximization
mixed integer optimization
minimaxoptimality
nite sample property

Ereignis
Geistige Schöpfung
(wer)
Chen, Le-yu
Lee, Sokbae
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2017

DOI
doi:10.1920/wp.cem.2017.5017
Handle
Letzte Aktualisierung
20.09.2024, 08:21 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Chen, Le-yu
  • Lee, Sokbae
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2017

Ähnliche Objekte (12)