Arbeitspapier

Individual and time effects in nonlinear panel models with large N, T

Fixed effects estimators of nonlinear panel data models can be severely biased because of the well-known incidental parameter problem. We develop analytical and jackknife bias corrections for nonlinear models with both individual and time effects. Under asymptotic sequences where the time-dimension (T) grows with the cross-sectional dimension (N), the time effects introduce additional incidental parameter bias. As the existing bias corrections apply to models with only individual effects, we derive the appropriate corrections for the case when both effects are present. The basis for the corrections are general asymptotic expansions of fixed effects estimators with incidental parameters in multiple dimensions. We apply the expansions to conditional maximum likelihood estimators with concave objective functions in parameters for panel models with additive individual and time effects. These estimators cover fixed effects estimators of the most popular limited dependent variable models such as logit, probit, ordered probit, Tobit and Poisson models. Our analysis therefore extends the use of large-T bias adjustments to an important class of models. We also analyze the properties of fixed effects estimators of functions of the data, parameters and individual and time effects including average partial effects. Here, we uncover that the incidental parameter bias is asymptotically of second order, because the rate of the convergence of the fixed effects estimators is slower for average partial effects than for model parameters. The bias corrections are still useful to improve finite-sample properties.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP32/14

Klassifikation
Wirtschaft
Estimation: General
Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models
Thema
Panel data
asymptotic bias correction
fixed effects

Ereignis
Geistige Schöpfung
(wer)
Fernández-Val, Iván
Weidner, Martin
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2014

DOI
doi:10.1920/wp.cem.2014.3214
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Fernández-Val, Iván
  • Weidner, Martin
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2014

Ähnliche Objekte (12)