Arbeitspapier
Bayes estimates in multivariate semiparametric linear models
Bayes estimates are derived in multivariate linear models with unknown distribution. The prior distribution is defined using a Dirichlet prior for the unknown error distribution and a ormal-Wishart distribution for the parameters. The posterior distribution for the parameters is determined and is a mixture of normal-Wishart distributions. The posterior mean of the observation distributions is a mixture of generalized Student distributions and of kernel estimates and empirical distributions based on pseudoobservations. Explicit expressions are given in the special cases of location - scale and two-sample models. The calculation of selfinformative limits of Bayes estimates yields standard estimates.
- Language
-
Englisch
- Bibliographic citation
-
Series: SFB 373 Discussion Paper ; No. 2002,58
- Classification
-
Wirtschaft
- Subject
-
Dirichlet prior
Multivariate linear model
location-scale model
twosample model
- Event
-
Geistige Schöpfung
- (who)
-
Bunke, Olaf
- Event
-
Veröffentlichung
- (who)
-
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
- (where)
-
Berlin
- (when)
-
2002
- Handle
- URN
-
urn:nbn:de:kobv:11-10049163
- Last update
-
10.03.2025, 11:41 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Bunke, Olaf
- Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
Time of origin
- 2002