Arbeitspapier

Bayes estimates in multivariate semiparametric linear models

Bayes estimates are derived in multivariate linear models with unknown distribution. The prior distribution is defined using a Dirichlet prior for the unknown error distribution and a ormal-Wishart distribution for the parameters. The posterior distribution for the parameters is determined and is a mixture of normal-Wishart distributions. The posterior mean of the observation distributions is a mixture of generalized Student distributions and of kernel estimates and empirical distributions based on pseudoobservations. Explicit expressions are given in the special cases of location - scale and two-sample models. The calculation of selfinformative limits of Bayes estimates yields standard estimates.

Language
Englisch

Bibliographic citation
Series: SFB 373 Discussion Paper ; No. 2002,58

Classification
Wirtschaft
Subject
Dirichlet prior
Multivariate linear model
location-scale model
twosample model

Event
Geistige Schöpfung
(who)
Bunke, Olaf
Event
Veröffentlichung
(who)
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
(where)
Berlin
(when)
2002

Handle
URN
urn:nbn:de:kobv:11-10049163
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Bunke, Olaf
  • Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes

Time of origin

  • 2002

Other Objects (12)