Artikel

Improving the accuracy: Volatility modeling and forecasting using high-frequency data and the variational component

In this study, we predict the daily volatility of the S&P CNX NIFTY market index of India using the basic "heterogeneous autoregressive" (HAR) and its variant. In doing so, we estimated several HAR and Log form of HAR models using different regressor. The different regressors were obtained by extracting the jump and continuous component and the threshold jump and continuous component from the realized volatility. We also tried to investigate whether dividing volatility into simple and threshold jumps and continuous variation yields a substantial improvement in volatility forecasting or not. The results provide the evidence that inclusion of realized bipower variance in the HAR models helps in predicting future volatility.

Sprache
Englisch

Erschienen in
Journal: Journal of Industrial Engineering and Management (JIEM) ; ISSN: 2013-0953 ; Volume: 3 ; Year: 2010 ; Issue: 1 ; Pages: 199-220 ; Barcelona: OmniaScience

Klassifikation
Management
Thema
realized volatility
forecasting
time series analysis
autoregressive model

Ereignis
Geistige Schöpfung
(wer)
Kumar, Manish
Ereignis
Veröffentlichung
(wer)
OmniaScience
(wo)
Barcelona
(wann)
2010

DOI
doi:10.3926/jiem.v3n1.p199-220
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Kumar, Manish
  • OmniaScience

Entstanden

  • 2010

Ähnliche Objekte (12)