Arbeitspapier

Understanding jumps in high frequency digital asset markets

While attention is a predictor for digital asset prices, and jumps in Bitcoin prices are well-known, we know little about its alternatives. Studying high frequency crypto data gives us the unique possibility to confirm that cross market digital asset returns are driven by high frequency jumps clustered around black swan events, resembling volatility and trading volume seasonalities. Regressions show that intra-day jumps significantly influence end of day returns in size and direction. This provides fundamental research for crypto option pricing models. However, we need better econometric methods for capturing the specific market microstructure of cryptos. All calculations are reproducible via the quantlet.com technology.

Sprache
Englisch

Erschienen in
Series: IRTG 1792 Discussion Paper ; No. 2021-019

Klassifikation
Wirtschaft
Thema
jumps
market microstructure noise
high frequency data
cryptocurrencies
CRIX
option pricing

Ereignis
Geistige Schöpfung
(wer)
Saef, Danial
Nagy, Odett
Sizov, Sergej
Härdle, Wolfgang
Ereignis
Veröffentlichung
(wer)
Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
(wo)
Berlin
(wann)
2021

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Saef, Danial
  • Nagy, Odett
  • Sizov, Sergej
  • Härdle, Wolfgang
  • Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"

Entstanden

  • 2021

Ähnliche Objekte (12)