Arbeitspapier

Spurious Precision in Meta-Analysis

Meta-analysis upweights studies reporting lower standard errors and hence more precision. But in empirical practice, notably in observational research, precision is not given to the researcher. Precision must be estimated, and thus can be p-hacked to achieve statistical significance. Simulations show that a modest dose of spurious precision creates a formidable problem for inverse-variance weighting and bias-correction methods based on the funnel plot. Selection models fail to solve the problem, and the simple mean can beat sophisticated estimators. Cures to publication bias may become worse than the disease. We introduce an approach that surmounts spuriousness: the Meta-Analysis Instrumental Variable Estimator (MAIVE), which employs inverse sample size as an instrument for reported variance.

Sprache
Englisch

Klassifikation
Wirtschaft
Statistical Simulation Methods: General
Single Equation Models: Single Variables: Instrumental Variables (IV) Estimation
Survey Methods; Sampling Methods
Thema
Publication bias
p-hacking
selection models
meta-regression
funnel plot
inverse-variance weighting

Ereignis
Geistige Schöpfung
(wer)
Irsova, Zuzana
Bom, Pedro R. D.
Havranek, Tomas
Rachinger, Heiko
Ereignis
Veröffentlichung
(wer)
ZBW – Leibniz Information Centre for Economics
(wo)
Kiel, Hamburg
(wann)
2023

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Irsova, Zuzana
  • Bom, Pedro R. D.
  • Havranek, Tomas
  • Rachinger, Heiko
  • ZBW – Leibniz Information Centre for Economics

Entstanden

  • 2023

Ähnliche Objekte (12)